Compatibility between shape equation and boundary conditions of lipid membranes with free edges.
نویسنده
چکیده
Only some special open surfaces satisfying the shape equation of lipid membranes can be compatible with the boundary conditions. As a result of this compatibility, the first integral of the shape equation should vanish for axisymmetric lipid membranes, from which two theorems of nonexistence are verified: (i) there is no axisymmetric open membrane being a part of torus satisfying the shape equation; (ii) there is no axisymmetric open membrane being a part of a biconcave discodal surface satisfying the shape equation. Additionally, the shape equation is reduced to a second-order differential equation while the boundary conditions are reduced to two equations due to this compatibility. Numerical solutions to the reduced shape equation and boundary conditions agree well with the experimental data [A. Saitoh et al., Proc. Natl. Acad. Sci. U.S.A. 95, 1026 (1998)].
منابع مشابه
A CLOSED FORM SOLUTION FOR FREE VIBRATION ANALYSIS OF TUBE-IN-TUBE SYSTEMS IN TALL BUILDINGS
In this paper the dynamic response of tube-in-tube systems for tall building structures is investigated. Inner and outer tubes are modeled using equivalent continuous orthotropic membranes; in which, each tube is individually modeled by a cantilever box beam. By applying the compatibility conditions on deformation of the two tubes, the governing dynamic equations of the tube-in-tube structure a...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملElastoplastic Buckling Analysis of Plates Involving Free Edges by Deformation Theory of Plasticity (RESEARCH NOTE)
Abstract In this paper elastoplastic buckling of rectangular plates with different boundary conditions are investigated. Differential governing equations of plate are obtained on the basis of general loading and according to deformation theory (DT) of plasticity. Various loading conditions contain uniaxial, biaxial and shear are studied. The employed material is AL7075T6 which is usually used...
متن کاملElement Free Galerkin Method for Static Analysis of Thin Micro/Nanoscale Plates Based on the Nonlocal Plate Theory
In this article, element free Galerkin method is used for static analysis of thin micro/nanoscale plates based on the nonlocal plate theory. The problem is solved for the plates with arbitrary boundary conditions. Since shape functions of the element free Galerkin method do not satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary conditions. Discre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 132 8 شماره
صفحات -
تاریخ انتشار 2010